118 research outputs found

    CES-514 Market Evaluation for Colchester Catalyst on the use of Robotic Wheelchairs

    Get PDF
    1.2 What is a Robotic Wheelchair?........................... 1 1.3 Type of Marketing Research used and sources of data...............

    Utilizing industry 4.0 on the construction site : challenges and opportunities

    Get PDF
    In recent years a step change has been seen in the rate of adoption of Industry 4.0 technologies by manufacturers and industrial organisations alike. This paper discusses the current state of the art in the adoption of industry 4.0 technologies within the construction industry. Increasing complexity in onsite construction projects coupled with the need for higher productivity is leading to increased interest in the potential use of industry 4.0 technologies. This paper discusses the relevance of the following key industry 4.0 technologies to construction: data analytics and artificial intelligence; robotics and automation; buildings information management; sensors and wearables; digital twin and industrial connectivity. Industrial connectivity is a key aspect as it ensures that all Industry 4.0 technologies are interconnected allowing the full benefits to be realized. This paper also presents a research agenda for the adoption of Industry 4.0 technologies within the construction sector; a three-phase use of intelligent assets from the point of manufacture up to after build and a four staged R&D process for the implementation of smart wearables in a digital enhanced construction site

    Applying deep reinforcement learning to cable driven parallel robots for balancing unstable loads : a ball case study

    Get PDF
    The current pandemic has highlighted the need for rapid construction of structures to treat patients and ensure manufacturing of health care products such as vaccines. In order to achieve this, rapid transportation of construction materials from staging area to deposition is needed. In the future, this could be achieved through automated construction sites that make use of robots. Toward this, in this paper a cable driven parallel manipulator (CDPM) is designed and built to balance a highly unstable load, a ball plate system. The system consists of eight cables attached to the end effector plate that can be extended or retracted to actuate movement of the plate. The hardware for the system was designed and built utilizing modern manufacturing processes. A camera system was designed using image recognition to identify the ball pose on the plate. The hardware was used to inform the development of a control system consisting of a reinforcement-learning trained neural network controller that outputs the desired platform response. A nested PID controller for each motor attached to each cable was used to realize the desired response. For the neural network controller, three different model structures were compared to assess the impact of varying model complexity. It was seen that less complex structures resulted in a slower response that was less flexible and more complex structures output a high frequency oscillation of the actuation signal resulting in an unresponsive system. It was concluded that the system showed promise for future development with the potential to improve on the state of the art

    XAI Sustainable Human in the Loop Maintenance

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordThe field of Explainable Artificial Intelligence (XAI) is a relatively new approach to AI, with the aim to provide black box algorithms with human intelligible narrative functionality. It is most often in end-of-life considerations of the asset lifecycle that sustainability issues are encountered. Modern maintenance practice requires a holistic understanding of lifecycle and options for sustainable asset treatments. human in the loop solutions offer a way to leverage both machine and human skill sets to provide the next level of automaton solutions for industrial maintenance activities. This paper presents a framework for human in the loop Intelligent and Sustainable Maintenance. In bridging the gap between machines and humans XAI leverages the best of both worlds to provide a new level of agility to cyber assisted maintenance activities and full lifecycle consideration of assets; a notion that is necessary throughout the organization in the achievement of sustainability goals set by governments around the world in the achievement of a net zero carbon emission economy

    Distributed manufacturing: A new digital framework for sustainable modular construction

    Get PDF
    This paper explores the notion of the modular building construction site as an applied instance of redistributed manufacturing; in so doing, this research seeks to reduce the environmental footprint of building sites, treating them as small digitally connected subunits. In seeking to provide a whole lifecycle appreciation of a construction project, it is noted that the presence of a framework to provide guidance on the consideration of Internet of Things (IoT) data streams and connected construction objects is currently lacking. This paper proposes use of embedded IoT enabled sensing technology within all stages of a modular building lifecycle. An expanded four-phase model of intelligent assets use in construction is proposed along with an outline of the required data flows between the stages of a given building’s entire lifecycle that need to be facilitated for a BIM (Buildings Information Modelling) representation to begin to describe a building project as a sustainable asset within the circular economy. This paper also describes the use of concrete as a modular sensing structure; proposing that health monitoring of the material in situ along with the recoding of environmental factors over time could help to extend the longevity of such structures

    Circular production and maintenance of automotive parts: an Internet of Things (IoT) data framework and practice review

    Get PDF
    The adoption of the Circular Economy paradigm by industry leads to increased responsibility of manufacturing to ensure a holistic awareness of the environmental impact of its operations. In mitigating negative effects in the environment, current maintenance practice must be considered for its potential contribution to a more sustainable lifecycle for the manufacturing operation, its products and related services. Focusing on the matching of digital technologies to maintenance practice in the automotive sector, this paper outlines a framework for organisations pursuing the integration of environmentally aware solutions in their production systems. This research sets out an agenda and framework for digital maintenance practice within the Circular Economy and the utilisation of Industry 4.0 technologies for this purpose

    A digital maintenance practice framework for circular production of automotive parts

    Get PDF
    The adoption of the Circular Economy paradigm by industry leads to increased responsibility of manufacturing to ensure a holistic awareness of the environmental impact of its operations. In mitigating negative effects in the environment, current maintenance practice must be considered, not just for the reduction of its own direct impact but also for its potential contribution to a more sustainable lifecycle for the manufacturing operation, its products and related services. Focusing on the matching of digital technologies to maintenance practice in the automotive sector, this paper outlines a framework for organisations pursuing the integration of environmentally aware solutions in their production systems. This research acts as a primer for digital maintenance practice within the Circular Economy and the utilisation of Industry 4.0 technologies for this purpose

    Ergonomic assessment tool for real-time risk assessment of seated work postures

    Get PDF
    © Springer International Publishing AG 2018. This paper presents a posture assessment tool which utilizes the depth sensing techniques of a 3D imaging sensor for ergonomic risk assessment of seated worker’s postures during controlled manual handling tasks. The tool, which has been developed to utilize the manual handling guidelines by the Health and Safety Regulators of some selected countries to measure and assess the postures of the upper bodies of Operators, is tested to ascertain its effectiveness in assessing seated postures. The tool offers real-time posture assessment with real-time feedback to inform Operators on when to adjust awkward seated postures. An experiment has been performed to record, assess and display the work postures of some seated Operators in real-time with ‘Good’ and ‘Awkward’ postures identified with real-time feedback provided to the Operators. Results show that the tool can assess seated work postures in real-time which helps to reduce the rate of occurrence of Work-Related Musculoskeletal Disorders

    Using Therbligs to embed intelligence in workpieces for digital assistive assembly

    Get PDF
    Current OEM (Original Equipment Manufacturer) facilities tend to be highly integrated and are often situated on one site. While providing scale of production such centralisation may create barriers to the achievement of fully flexible, adaptable, and reconfigurable factories. The advent of Industry 4.0 opens up opportunities to address these barriers by decentralising information and decision-making in manufacturing systems through CPS (Cyber Physical Systems) use. This research presents a qualitative study that investigates the possibility of distributing information and decision-making logic into ‘smart workpieces’ which can actively participate in assembly operations. To validate the concept, a use-case demonstrator, corresponding to the assembly of a ‘flat-pack’ table, was explored. Assembly parts in the demonstrator, were equipped with computation, networking, and interaction capabilities. Ten participants were invited to evaluate the smart assembly method and compare its results to the traditional assembly method. The results showed that in its current configuration the smart assembly was slower. However, it made the assembly process more flexible, adaptable and reconfigurable
    • …
    corecore